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Abstract—We prepared three different types of compounds, two a-alkylidene-c-butyrolactones and 3,4-dihydronaphthalene-2-carb-
oxylic acid from methyl 2-isobutenylcinnamates or methyl 2-isopentenylcinnamates as the common intermediates, which were
derived from the acetates of Baylis–Hillman adducts.
� 2004 Elsevier Ltd. All rights reserved.
Various a-alkylidene-c-butyrolactones are important
compounds due to the abundance of the skeleton in a
variety of natural products, especially in sesquiterpene
lactones and lignans.1 Also, they served as valuable syn-
thetic intermediates for the synthesis of many kinds of
natural products and biologically important sub-
stances.1–3 Some of the lactones showed interesting
pharmacological, fungicidal, and plant-growth regula-
tory activities.1–3 In view of their biological importance,
numerous synthetic methods have been reported.2–4

The dihydronaphthalene moiety is also found in many
lignans, a class of natural products found in plants.5 Re-
cently, some anilide derivatives of dihydronaphthalene
showed anti-HIV-1 activity.5a In these respects, a variety
of synthetic methods of dihydronaphthalenes have been
developed.6

During the course of our studies on the chemical trans-
formations of the Baylis–Hillman adducts,7 we intended
to prepare a-benzylidene-c-butyrolactone derivatives.
Our synthetic rationale is depicted in Scheme 1. Intro-
duction of appropriate vinyl moiety onto the Baylis–
Hillman acetates 1 followed by acid-catalyzed lactoniza-
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tion strategy would furnish the desired a-alkylidene-c-
butyrolactones 4. The reaction of the Baylis–Hillman
acetate 1a and isopropenylmagnesium bromide (2a) in
THF at 0–10 �C gave the corresponding SN2 0 type com-
pound, methyl 2-isobutenylcinnamate (3a) in 75%
yield.8 With the compound 3a in our hands, we exam-
ined various reaction conditions. The reaction of 3a in
benzene in the presence of H2SO4 (3equiv) at room tem-
perature gave the 5,5-dimethyllactone derivative 4a in
72% yield as expected.9,10 Without the need of hydroly-
sis step of the ester moiety to the carboxylic acid func-
tionality, the lactonization step proceeded well with
the ester moiety.11

It is interesting to note that the reaction of 3a in benzene
in the presence of H2SO4 (3equiv) at elevated tempera-
ture (60–70 �C) gave the dimethyl 3,4-dihydronaphthal-
ene 5a in 72% yield.12 Initially, we thought that 5a
might be formed via the acid-catalyzed Friedel–Crafts
type reaction of 3a and the following acid hydrolysis
of the ester moiety during the reaction or separation
stage. However, we could not observe any trace
amounts of the corresponding methyl ester of 5a. This
means that the mechanism for the formation of 5a must
involve different reaction pathway. Thus, we examined
the reaction of the 5,5-dimethyllactone 4a and H2SO4

at elevated temperature (60–70 �C) in benzene and we
could obtain 5a in high yield (87%). From the results
we could conclude that 5a was formed via the lactone
derivative 4a. Similar transformation have been pub-
lished by Mark and co-workers in a similar system.13
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The mechanism for the formation 3,4-dihydronaphthal-
enes 5a from 4a could be explained as follows as shown
in Scheme 2: sequential protonation, ring-opening to
carbocation intermediate (I), and Friedel–Crafts reac-
tion. The arene moiety of (I) has low nucleophilicity
due to the conjugation with the electron withdrawing
carboxylic acid moiety. Thus, the successful Friedel–
Crafts reaction is interesting.

As a next trial, we examined the reaction of 3a and m-
CPBA in CHCl3 in order to synthesize the correspond-
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ing epoxide and eventually 5-methyl-5-hydroxymethyl-
lactone derivative 6a.4 Actually, the reaction afforded
the corresponding 5-methyl-5-hydroxymethyl lactone
6a in 84% yield during the epoxidation stage directly.14

In the reaction, generated m-chlorobenzoic acid might
act as the acid catalyst for the lactonization step. In
order to facilitate the lactonization rate we added cata-
lytic amounts of trifluoroacetic acid in some cases (for
6d and 6e) depending upon the substrates (Scheme 3).
Diastereo- isomeric mixtures of the corresponding syn
and anti forms were formed for the cases of 6d and 6e
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Table 1. Synthesis of 3, 4, 5, and 6

Entry R1 R2 3 4 5 6

a H H 75 72 72 84

b Cl H 70 76 70 81

c CH3 H 73 70 60 69

d H CH3 81 70 57 62

e Cl CH3 86 75 55 56
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Figure 1.
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in variable ratios (Scheme 3).14 During the synthesis of
6a–e we did not observe nor isolate the corresponding
six-membered lactones.

By using 3a as a model compound we prepared three dif-
ferent compounds, 4a, 5a, 6a in good to moderate yields
by slightly modifying the reaction conditions. We tried
the reaction conditions with other substrates 3b–e and
the results are summarized in Table 1.

The configuration of the double bond of lactones 4a–e is
thought to be as E by comparison with the chemical
shift data of the previously reported.3,4,7 The NOE
experiment with 4c also confirmed the configuration as
E. Irradiation of the aromatic proton showed 2.2%
NOE increment of the vinyl peak (Fig. 1).

In conclusion, we prepared some interesting three differ-
ent types of compounds from same starting material by
using simple operations. The studies for the application
of this methodology toward some natural products and
biologically active candidates are underway in our labo-
ratory.
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Compound 6a: 84%; 1H NMR (CDCl3) d 1.45 (s, 3H), 2.02
(br s, 1H), 2.90 (dd, J = 17.7 and 3.0Hz, 1H), 3.33 (dd,
J = 17.7 and 3.0Hz, 1H), 3.58 (d, J = 12.0Hz, 1H), 3.76 (d,
J = 12.0Hz, 1H), 7.37–7.52 (m, 5H), 7.57 (t, J = 3.0Hz,
1H); 13C NMR (CDCl3) d 23.78, 36.08, 68.32, 83.60,
125.47, 128.89, 129.86, 130.04, 134.63, 136.89, 171.65.
Compound 6b: 81%; 1H NMR (CDCl3) d 1.44 (s, 3H), 2.55
(br s, 1H), 2.84 (dd, J = 17.7 and 3.0Hz, 1H), 3.32 (dd,
J = 17.7 and 3.0Hz, 1H), 3.56 (d, J = 12.3Hz, 1H), 3.78 (d,
J = 12.3Hz, 1H), 7.37–7.44 (m, 4H), 7.48 (t, J = 3.0Hz,
1H); 13C NMR (CDCl3) d 23.76, 35.98, 68.17, 83.80,
126.25, 129.16, 131.14, 133.09, 135.28, 135.83, 171.52.
Compound 6c: 69%; 1H NMR (CDCl3) d 1.42 (s, 3H), 2.38
(s, 3H), 2.85 (dd, J = 17.1 and 3.0Hz, 1H), 3.33 (dd,
J = 17.1 and 3.0Hz, 1H), 3.56 (d, J = 12.3Hz, 1H), 3.60 (br
s, 1H), 3.75 (d, J = 12.3Hz, 1H), 7.21 (d, J = 8.1Hz, 2H),
7.38 (d, J = 8.1Hz, 2H), 7.50 (t, J = 3.0Hz, 1H); 13C NMR
(CDCl3) d 21.39, 23.70, 36.01, 68.06, 83.82, 124.38, 127.47,
129.54, 130.04, 131.82, 133.11, 136.73, 140.23, 172.18.
Compound 6d: 62%; 1H NMR (CDCl3) d 1.26 (d,
J = 6.6Hz, 3H), 1.42 (s, 3H), 2.85 (dd, J = 17.7 and
3.0Hz, 1H), 3.27 (dd, J = 17.7 and 3.0Hz, 1H), 3.40
(br s, 1H), 3.79 (q, J = 6.6Hz, 1H), 7.30–7.51 (m, 5H),
7.53 (t, J = 3.0Hz, 1H); 13C NMR (CDCl3) 16.91,
22.56, 36.70, 72.35, 85.79, 125.41, 128.78, 129.74, 129.95,
134.50, 136.65, 171.68. In the 1H NMR spectrum of 6d, the
other minor diastereoisomer appeared in about 10%
intensity.
Compound 6e: 56%; 1H NMR (CDCl3) d 1.28 (d,
J = 6.6Hz, 3H), 1.44 (s, 3H), 2,83 (dd,J = 17.7 and
3.0Hz, 1H), 3.25 (dd, J = 17.7 and 3.0Hz, 1H), 3.75–3.84
(m, 1H), 7.41 (s, 4H), 7.50 (t, J = 3.0Hz, 1H); 13C NMR
(CDCl3) d 17.11, 22.54, 36.84, 72.59, 85.73, 125.99, 129.21,
131.15, 133.07, 135.41, 135.90, 171.20. In the 1H NMR
spectrum of 6e, the other minor diastereoisomer appeared
in about 20% intensity. We separated the major isomer in
pure state by column chromatography and obtained the
above 13C NMR spectrum.
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